home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Amiga Format CD 46
/
Amiga Format CD46 (1999-10-20)(Future Publishing)(GB)[!][issue 1999-12].iso
/
-in_the_mag-
/
reader_requests
/
scilab
/
demos
/
lmitool
/
bigm.sci
next >
Wrap
Text File
|
1999-09-16
|
3KB
|
105 lines
function [x,Z,z,ul,iters]=bigM(F,blck_szs,c,x0,M,nu,abstol,reltol,tv,maxiters);
// [x,Z,z,ul,iters]=bigM(F,blck_szs,c,x0,M,nu,abstol,reltol,tv,maxiters);
//
// minimize c^T x
// subject to F(x) = F0 + x1*F1 + ... + xm*Fm >= 0
// Tr F(x) <= M
//
// maximize -Tr F0*(Z-zI) - Mz
// subject to Tr Fi*(Z-zI) = c_i
// Z >= 0, z>= 0
//
// Convergence criteria:
// (1) maxiters is exceeded
// (2) duality gap is less than abstol
// (3) primal and dual objective are both positive and
// duality gap is less than (reltol * dual objective)
// or primal and dual objective are both negative and
// duality gap is less than (reltol * minus the primal objective)
// (4) reltol is negative and
// primal objective is less than tv or dual objective is greater
// than tv
//
// Input arguments:
// F: (sum_i n_i^2) times (m+1) matrix
// [ F_0^1(:) F_1^1(:) ... F_m^1(:) ]
// [ F_0^2(:) F_1^2(:) ... F_m^2(:) ]
// ... ... ...
// [ F_0^L(:) F_1^L(:) ... F_m^L(:) ]
// F_i^j: jth block of F_i, size n_i times n_i.
// blck_szs: L-vector [n_1 ... n_L], dimensions of diagonal blocks.
// c: m-vector. Specifies primal objective.
// x0: m-vector. The primal starting point. F(x0) > 0.
// M: scalar. M > Tr F(x0).
// nu: >= 1.0. Controls the rate of convergence.
// abstol: absolute tolerance.
// reltol: relative tolerance. Has a special meaning when negative.
// tv: target value.
// maxiters: maximum number of iterations.
//
// Output arguments:
// x: m-vector; last primal iterate.
// Z: last dual iterate; block-diagonal matrix stored as
// [ Z^1(:); Z^2(:); ... ; Z^L(:) ].
// z: scalar part of last dual iterate.
// ul: ul(1): primal objective, ul(1): dual objective.
// iters: number of iterations taken.
[rowf,colf]=size(F);
m = colf-1;
if (rowf ~= sum(blck_szs.*blck_szs))
error('Dimensions of F do not match blck_szs.');
end;
[rowx0,colx0]=size(x0);
if (rowx0 ~= m) | (colx0 ~= 1)
error('x0 must be an m-vector.');
end;
if (prod(size(x0)) ~= m),
error('c must be an m-vector.');
end;
// I is the identity
I = zeros(rowf,1);
blck_szs=matrix(blck_szs,1,prod(size(blck_szs)));
k=0; for n=blck_szs,
I(k+[1:n*n]) = matrix(eye(n,n),n*n,1); // identity
k = k+n*n; // k = sum n_i*n_i
end;
// Z0 = projection of I on dual feasible space
Z0 = I-F(:,2:m+1) * ...
( (F(:,2:m+1)'*F(:,2:m+1)) \ ( F(:,2:m+1)'*I - c ) );
// mineigZ is the smallest eigenvalue of Z0
mineigZ = 0.0;
k=0; for n=blck_szs,
mineigZ = min(mineigZ, min(real(spec(matrix(Z0(k+[1:n*n]),n,n)))));
k=k+n*n;
end;
// z = max( 1e-5, -1.1*mineigZ )
Z0(k+1) = max( 1e-5, -1.1*mineigZ);
Z0(1:k) = Z0(1:k) + Z0(k+1)*I;
if (M < I'*F*[1;x0] + 1e-5),
error('M must be strictly greater than trace of F(x0).');
end;
// add scalar block Tr F(x) <= M
F = [F; M-I'*F(:,1),-I'*F(:,2:m+1)];
blck_szs = [blck_szs,1];
[x,Z,ul,info]=...
semidef(x0,pack(Z0),pack(F),blck_szs,c,[nu,abstol,reltol,tv,maxiters]);
iters = info(2);
nz=prod(size(Z))
z=Z(nz)
Z=unpack(Z(1:nz-1),blck_szs(1:prod(size(blck_szs))-1))
Z = Z(1:k);